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The time dependence of the Fourier transform phase of coherently scattered radiation from a system under-
going ordering is studied. Specifically, we derive a simple model that takes into account the known scaling
laws for ordering dynamics to predict the statistical behavior of the Fourier transform phase. We consider a
two-dimensional system of domains undergoing ordering for both the nonconserved and conserved order-
parameter cases �models A and B, respectively�. Predictions from our model are compared with numerical
experiments, where a time-dependant Ginzburg-Landau equation is integrated to compute the dynamics of the
real-space system; then a simple numerical �discrete� Fourier transform is applied to compute the Fourier phase
as well as the amplitude �directly related to scattering intensity�. An average phase-decorrelation time �the
average time it takes for the phase to change by a specific amount� is obtained using both our theoretical model
and the numerical results. This quantity is then used to implement a phase-retrieval strategy that consists of
measuring scattering intensities of the same nonequilibrium system at different times and then applying an
iterative phase-retrieval algorithm �like Fienup’s hybrid input-output� recursively with improved initial esti-
mates for faster convergence and higher convergence rates.
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I. INTRODUCTION

A. Coherent scattering from ordering systems

Scattering of radiation, for example, x-rays, neutrons, or
electrons, is a common technique for measuring the micro-
scopic structure of materials. The spatial inhomogeneity of
some property in the scattering probe is what makes the
incident-beam scatter. The intensity of the resulting scattered
beam can then measured in a detector. When the incident
radiation is coherent, the measured intensity �in the Born
approximation� is related to the magnitude of the Fourier
transform of the structure of the sample. If we represent the
property that causes the scattering as the field ��r�, then

I�k� � ��̂�k��2, �1�

where I�k� is the measured intensity, k is the scattering wave

vector, and �̂�k� is the Fourier transform of ��r�. In this
work, we consider coherent scattering from systems under-
going ordering �kinetics of a first-order phase transition� after
a temperature quench. We represent the order parameter as a
continuous field ��r�. The characteristic scattering intensity
pattern for these systems features rapidly fluctuating pieces
also known as speckle. Typical configuration of domains un-
dergoing ordering and their corresponding speckle patterns at
a fixed time � is shown in Fig. 1.

Ordering is characterized by a well-known dynamic scal-
ing behavior, i.e., patterns at two different times are statisti-
cally similar and their properties differ only by a time-
dependent factor. This behavior known as the scaling regime
usually holds for late times, where domains are well defined
and interfaces are relatively sharp. The time dependence of
the characteristic length R, which is the only time-dependent
quantity, is known to obey a power law of the form
R���= �B��n, where B is a constant and n depends on the
conservation laws �or absence thereof� that govern the order-

ing dynamics. A large number of ordering phenomena fall
into two categories �called universality classes�: �1� those for
which the order parameter is not conserved, called model A,
and �2� those for which the order parameter is conserved,
called model B. All of the results presented here are obtained
for both of these models. The exponent n is known to have a
different value for each of these classes. Namely, 1/2 for
model A and 1/3 for model B �1–3�. Examples of systems
described by model A are the Ising model with flip-spin dy-
namics and binary alloys undergoing an order-disorder tran-
sition. Systems described by model B include the conserved
Ising model and binary alloys undergoing spinodal decom-
position.

Important properties of a system can be obtained from
scattering measurements. In incoherent scattering, for in-
stance, the Fourier transform of the density �or order param-
eter� correlation function is proportional to the structure fac-
tor

S�k,�� = �I�k,��� � Ĉ�k,�� , �2�

where

C�r,�� = ���0,����r,��� . �3�

The brackets in Eqs. �2� and �3� denote ensemble average
over initial conditions, which is a way of simulating incoher-
ent scattering. If a system is isotropic then all average prop-
erties depend only on the magnitude of the wave vector
k= �k�. When the scaling relation holds, one can express
S�k ,�� in terms of a scaling function that depends only on
scaled time t��k1/n,

S�k,�� = k−dF1�t� . �4�

Alternatively, S�k ,�� can also be expressed in terms of a
function of only the scaled wave number k� defined as
k�=kR����k�n,
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S�k,�� = R���dF1��k�� . �5�

Equations �2�–�5� are valid for incoherent scattering,
where self-averaging takes place and one cannot obtain in-
formation about the specific structure �the domains’ configu-
ration at a given time� of the system, as opposed to coherent
scattering. In the latter case, it can be readily shown that the
Fourier transform of the intensity corresponds to the Fourier
transform of the autocorrelation function of the order param-
eter �4�, and if, in addition to the intensity, the phase is
known �recall that the Fourier transform is in general a com-
plex quantity�, then the order-parameter field, or a quantity
proportional to it, can also be known via a simple inverse
Fourier transform.

B. Phase retrieval

Phase retrieval can be described as the task of obtaining
the phase of a function when only the magnitude �modulus�
of this function is known. The solution is known to be es-
sentially unique only when the dimensionality of the prob-
lem �d� is greater than 1 �5,6�. In order to obtain a unique
solution �aside from certain trivial characteristics �7�� for d
�2, some additional information about the image is needed.

This matter, also known as the phase problem, is raised in
many fields of interest, such as x-ray crystallography, x-ray,
neutron or electron diffraction, and astronomy, when it is
often the case that one is only able to measure a quantity
related to the magnitude of the Fourier transform of a quan-
tity of interest �8–11�.

In the previous section, we described how scattering in-
tensity obtained from experiments relates to spatial proper-
ties of the order parameter in the probed system. Namely,
Eqs. �1� and �2� relate the intensity to the modulus of the
Fourier transform of the order parameter �coherent scatter-
ing� and to the structure factor �incoherent scattering�, re-
spectively. In this work, we are interested in obtaining the
real-space order parameter from the intensity in coherent
scattering measurements and the Fourier phase obtained via
phase retrieval, i.e., solving the phase problem.

It was also mentioned in the previous section that the
coherent scattering intensity provides some information
about the structure. However, the intensity alone is insuffi-
cient to recover the precise real-space configuration of a sys-

tem because the phase of the Fourier transform �̂�k� is lost,
as it cannot be measured in the detector.

In order to obtain the real-space function ��r�, one needs
additional a priori information that hopefully can be incor-
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FIG. 1. Examples of 2D phase ordering �numerical simulations with a grid of size 512�512� following a temperature quench. �a�
Domain growth �model A� at time �=75 �in rescaled units�. �b� Speckle pattern ��I� of system �a� calculated as the modulus of its Fourier
transform. �c� Spinodal decomposition �model B� at �=2000 and �d� speckle pattern ��I� of �c�.
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porated into a phase-retrieval method. In most cases, some
information is available in the form of constraints that are
characteristic of the image of study �e.g., positivity, compact-
ness, support, image intensity, or a a combination of these�.

Unfortunately, even when enough is known to retrieve the
phase in principle, no procedure has been developed that
systematically guarantees the solution of the phase problem
for all cases. However, several methods have been developed
and applied with varying degrees of success. The first impor-
tant contribution was made by Gerchberg and Saxton �12� in
1972. They developed an algorithm for phase retrieval for
cases where both the Fourier and image-space amplitudes are
known. Fienup �13� modified the Gerchberg-Saxton algo-
rithm for objects applying support and non-negativity con-
straints. In 1982, Bates et al. developed a method based on
the outward recursive propagation of the phase using over-
sampled measurements of the Fourier transform modulus for
compact images �7,14,15�. Again, Fienup �16� in 1982, intro-
duced a set of algorithms, among which the “hybrid input-
output” �HIO� is the most widely used in imaging applica-
tions. Elser �17� introduced the “difference map” and identi-
fied the Fienup algorithms as special cases of the iterated
projections method. In general, for all of the algorithms men-
tioned above, the performance depends on the set of a priori
constraints available for the particular type of images for
which the algorithm is applied.

Most of these methods are iterative, usually use involving
an initial guess or estimate of the solution, which is im-
proved recursively until a fixed point is reached. Generally, it
has been found, especially in Fienup’s methods, that the ef-
fectiveness and rate of convergence depend significantly on
the initial estimate.

In this work, we propose a phase-retrieval strategy in
which an algorithm �we use HIO, but this is not essential� is
applied consecutively using simulated intensity data taken at
different times of a single instance of ordering dynamics. As
we will describe in the following sections, by choosing ap-
propriate time intervals in which to measure we can improve
phase retrieval by making better initial guesses taken from
previously obtained solutions at “nearby” states. In other
words, for a system undergoing spinodal decomposition or
domain growth, we propose the use of intensity “snapshots”
taken at sufficiently short-time intervals to facilitate phase
retrieval when the solution at one or more of these times is
known.

In Sec. II we derive a simple theoretical model for phase
decorrelation as a function of time during ordering dynamics.
In Sec. III we obtain a kind of two-time phase covariance
�phase-decorrelation function� from which we calculate a
phase-decorrelation time. We compare our numerical and
theoretical results. In Sec. IV we apply these results to our
phase-retrieval strategy and present an example in which it is
applied. Finally, we present our conclusions in Sec. V.

II. MODEL

In this section, we present a simple model to obtain the
standard deviation of the phase change between two times of
the domains evolution for ordering dynamics. Let there be a

system described by order parameter ��r ,��. We consider
ordering after a symmetric quench into the coexistence re-
gion. In the late time regime, where domains are well defined
and of size considerably larger compared to the thickness of
interfaces, the value of � at a point within one of the do-
mains can be approximated by the equilibrium value of that
order parameter under the present set of conditions. For in-
stance, let ��eq, with �eq�0, be the equilibrium value of
the order parameter, then we consider ��r ,��	 ��eq every-
where except at the interfaces. Furthermore, we neglect the
interface thickness.

Within these approximations, we take our system to be
described by the field ��r ,��, which can take only the values

��eq. Let �̂�k ,�� be the spatial two-dimensional �2D� Fou-

rier transform of ��r ,��. We can write �̂ in terms of its
modulus A and phase �,

�̂�k,�� = A�k,��e��k,��. �6�

As we mentioned in the previous section, at late times of
the evolution of domains, the statistical properties of the sys-
tem depend on time only through a characteristic length R�t�.
This quantity corresponds to the average domain size.

Because within our approximations, both the magnitude
and argument of the Fourier transform are fully determined
by the position of the interfaces, then the motion of the in-
terfaces completely determines the time evolution of both
modulus and phase. With this in mind, we constructed the
simplest possible model that both allows for some analysis
and roughly preserves the same features of the real domains
in terms of interface motion. We describe this model below,
mentioning a few important approximations along the way.

We define our model system �0�r ,�� to be a set of non-
intersecting 2D circles with their centers randomly distrib-
uted and with sizes obeying the following time-dependent
distribution:

n�	� = 
	��	� , �7�

where 
 is a proportionality constant, n�	� is the proportion
of circles of curvature 	 �radius r=1 /	�, and ��	� is the
curvature distribution of the true system, defined in such way
that ��	�d	 is proportional to the total interface length of
curvature 	 and 	+d	. The proportionality constant in Eq.
�7� can be obtained via the normalization of n�	�, which
gives 
=1 / �	�=R.

We now take the Fourier transform of �0�r�. Since this is

a linear operator, we can define the quantity ��̂0�k ,	� as the
partial Fourier transform of all circles of curvature between 	
and 	+d	. The value of �0�k� is then

�̂0�k� = 

0



n�	���̂0�k,	�d	 . �8�

In a finite system �because the number of circles is a discrete
quantity�, the integral in Eq. �8� must become a sum.

Our next approximation is that the distribution n�	� is
sufficiently sharp and dominated by the mean. In this case,

n�	�=��	− �	�� and �̂0�k�= �̂0�k ,	�. Given now that all
circles are assumed to be of radius R=1 / �	�, our model sys-
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tem �0�r ,�� is described only by R and the set �r j� represent-
ing the positions of the centers of the circles. Ignoring the
constant background term, whose Fourier transform gives a
term proportional to ��k�, we have, for k�0,

�̂0�k;R,�r j�� = 2�0
j

�̂�k;R,r j� , �9�

where,

��r;R,r j� = �1 if �r − r j� � R

0 otherwise,
� �10�

corresponds to a circular step function of radius R, centered
on r j. Its Fourier transform is proportional to the Bessel
function of the first kind and order one, J1 with a phase
factor determined by the value of r j,

�̂�k;R,r j� =
2�R

k
J1�kR�eik·rj . �11�

Substituting Eq. �11� into Eq. �9�, we get

�̂0�k;R,�r j�� =
4��0R

k
J1�kR�

j

eik·rj . �12�

The phasor sum on Eq. �12� becomes a random walk in 2D if
the positions �r j� are randomly distributed. Next, we consider
a small displacement of the interface, which in our model
system corresponds to an expansion or contraction of the
circles that constitute it. It is important to stress at this point
that we are not modeling our real systems domains to be �0.
Rather, we are modeling the displacement of the domains
interfaces within a short period of time �for the purpose of
phase change� as if it were approximately given by the dis-
placement of the interfaces in our model system. We con-
sider the simplest case of interface displacement that pro-
duces an argument change in our model system, which is the
uniform expansion or contraction of circles. To the first or-
der, we consider that displacement to be given, in average,
by the change in characteristic domain size �R within a short
time ��. Thus, each circle is allowed to either randomly con-
tract or expand �but not displace� by �Rj = � ��R�. The result-
ing change in �0 is given by

��̂0�k;R,�r j�� = �̂0�k;�R + �Rj�,�r j�� − �̂0�k;R,�r j��

= 4��0RJ0�kR�
j

eik·rj�Rj �13�

for small values of ��Rj�. Since the signs of �Rj are random,
the sum in Eq. �13� is also a random walk but independent to

that of Eq. �12�. Seeing both �̂0 and ��̂0 as statistically in-
dependent phasors and knowing the variance of the magni-
tude of each, we can estimate the variance of the phase dif-
ference ��

���2� � 2� ���R��
R

�2

. �14�

To obtain Eq. �14�, we have, in addition, taken only the
lowest-order terms in the expansion of both J0 and J1, thus,
making it only valid for kR�1 �small wave numbers�. Note

that, for that limit, the above expression is no longer depen-
dent on k. Now we substitute the time dependence into R and
�R, given by R= �B��n and �R	�dR /d����=nBn�n−1��.
Substituting in Eq. �13�, we get

D��,��� � ���2�1/2 = �n�̄−1�� , �15�

where �̄ is the average time within the interval �� and � is a
proportionality constant. Equation �15� gives us the rms
value of the change in phase as a function of time. It should
be valid for small time intervals and small values of kR.
Even though many approximations were made in its deriva-
tion, Eq. �15� is in fairly good agreement with our numerical
results as will be seen in the following sections.

III. NUMERICAL WORK

In this section, we obtain, via numerical simulations, a
few important properties to describe the time evolution of the
Fourier transform phase during ordering. To obtain ensemble
averages of quantities, we perform a set of simulations for
systems undergoing ordering after a temperature quench into
a coexistence region, varying only initial conditions deter-
mined by the thermal noise. We consider the dynamics de-
scribed by both a nonconserved �model A� and a conserved
�model B� order parameter. For each case, we use a deter-
ministic equation that can easily be integrated in time using
Euler’s method. The derivation of this equation as well as the
details of the integration procedures are identical those pre-
sented in Ref. �18� for model A and Ref. �19� for model B.
As is done in both of these references, thermal noise is ne-
glected throughout the domains’ evolution and the source of
randomness is the initial state.

In Refs. �18,19�, intensity is calculated from the Fourier
transform modulus in simulations of ordering dynamics.
These results are used to compute the two-time covariance
correlation functions to characterize intensity �speckle� fluc-
tuations from the average �whose behavior is well known�.
In the case of the phase, which is not measurable, its average
value �at any time� has no physical meaning; it is only useful
when it is known at a particular instance. However, the av-
erage rate of change in the phase in time is a useful quantity
since it is related to the real-space evolution of the domains.
In this work, we compute what we define as the phase-
decorrelation function

Ck�k,�1,�2� = ����k,�1� − ��k,�2���1/2. �16�

As expected, this quantity can also be collapsed into a scal-
ing function dependent only on scaled times ti=Bk1/n�i at the
late stages of ordering Ck�k ,�1 ,�2�=C�t1 , t2�. By construc-
tion C�t , t�=0 and increases as �t increases.

To compute C�t1 , t2�, all simulation parameters �except
system size; we took 512� were kept identical to those used
in Refs. �18,19� to facilitate comparison of results. The con-
tour plot of the square root of C�t1 , t2� for models A and B is
presented in Fig. 2. These plots are similar to those of two-
time intensity covariance presented in Refs. �18,19�. Follow-
ing their approach, we also substitute t1 and t2 by the more
natural variables: time average t̄= �t1+ t2� /2 and time differ-
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ence �t= �t2− t1�. We also define a characteristic value �tc
that corresponds to the time difference at which ���2�1/2 has
a definite value. In Fig. 3, we plot �again for model A and
model B� the characteristic time difference vs average time
for ���2�1/2=45°. We can see that for both cases, at small
average times �tc increases linearly with time. This result
agrees with the one obtained with our model on the previous
section �note that Eq. �15� remains unchanged if we use res-
caled time t instead of ��. Below, this result is used to obtain
time intervals for which the angle decorrelation is constant,
as this helps us choose optimal snapshots of the system for
phase retrieval.

IV. RESULTS

We now present an example where we incorporate the
results obtained in the previous section into our phase-

retrieval strategy. The way we proceed is essentially by gen-
erating a series of simulated intensity snapshots at time in-
tervals determined with the use of Eq. �15�. These snapshots
represent measurements at different times of a single under-
going domain growth. We let �� j�; j=1,2 , . . . ,Ns be the set
of �rescaled� times at which these snapshots are taken. They
are chosen by the following way: the first time �1 of the
series is chosen to be any time within the late-stage growth
regime �where scaling applies and domains are well defined�.
The next step is to apply Eq. �15� recursively �having chosen
a value for the constant � and for D� to obtain the rest of the
time series. The last time of the series should be one for
which the system possesses a well-defined and relatively
simple structure; simple enough to be easily reconstructed
�without stagnation� by a standard phase-retrieval method,
such as HIO, regardless of the initial guess employed. In the
following sample run, where we consider the domain growth
�model A� in a 2D system of size 256�256. We let D
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=45° and we obtain the value of � from the plot of Fig. 3�b�.
In the form of a recursive relation, Eq. �15� �recall that under
the approximations of our model, Eq. �15� holds for both �
and t� reads as

�n+1 = ��n, �17�

where �= �2+�� / �2−�� and �=D� /n. Equation �17� shows
the times �� j� constitute a geometric series. Empirically, we
found �1=12.5 and �N=500 to be appropriate initial and final
times. For the value of �	1.2 obtained from the graph, we
found that approximately 22 time frames cover the entire

time interval. The value of � was slightly adjusted to 	1.193
so that the final frame corresponds to �=500.

For the final intensity frame, we applied Fienup’s HIO
algorithm �details of its implementation are given in Ref.
�16�� with finite tight support constraints to retrieve the im-
age ��r�. As initial input image, we used a set of random
numbers uniformly distributed between −�eq and �eq. In
what follows, we refer to this initial random guess as random
input. Once the phase �and therefore� the image at �N was
found. We used this image as input �initial estimate� for the
HIO algorithm at �N−1. Because we expect some degree of
correlation between the phase at these two times, the input
�N must be a better estimate than a random one. Indeed, as
we show below, the convergence of the algorithm is much
faster in the former case. We repeat this procedure recur-
sively for all time frames until we get to �1. In Fig. 4, we
compare the error metric ��� convergence curves obtained
with this strategy to the same curves obtained from random
inputs. We pick sample intensity snapshots �we show the
corresponding order-parameter images instead� at four differ-
ent times between �and including� �1 and �N. We found, as
Fig. 4 shows, that using the strategy we propose above dras-
tically reduces convergence time for each sample. An inter-
esting finding is that the improved initial estimate �IIE� con-
vergence curves are all approximately the same �they
overlap� for different times. Figure 5 shows ensemble aver-
ages of IIE curves for the same set of times shown in Fig. 4.
Collapse of the data to a single curve is apparent. Empiri-
cally, we found the best fit to this curve to be a stretched
exponential.

V. CONCLUSIONS

We have, both by a simple model and through numerical
simulations, obtained an expression for the average rate of
change in the phase of the Fourier transform of the order

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4

0.5

50 100 150 200
0.0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300

0.1

0.2

0.3

0.4

0.5

0.6

a)

b)

c)

d)

e)

f)

g)

h)

RI

RI

RI

RI

IIE

IIE

IIE

ε

ε

ε

ε

iter. no.

iter. no.

iter. no.

iter. no.

FIG. 4. Patterns of domain growth �model A� after temperature
quench, at four different times �a� �=12.5, �b� �=35.8, �c� �
=122.8, and �d� �=500. �e�–�h� Error metric � vs number of itera-
tions for phase retrieval of the corresponding patterns on the left.
Convergence curves for random inputs �RIs� are compared with
those using IIEs.

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

ε

iter. no.

FIG. 5. Overlap of convergence curves, from improved initial
estimates, corresponding to different times. Error metric � vs num-
ber of iterations.

MONTIEL, SUTTON, AND GRANT PHYSICAL REVIEW E 80, 041112 �2009�

041112-6



parameter in a system undergoing ordering. We have found
an expression to estimate the time interval for which the
angle statistically decorrelates. This time interval depends on
the average time, i.e., the of the domains’ evolution. We have
devised and applied an effective strategy for phase retrieval
that greatly reduces the convergence time of a typical algo-
rithm like Fienup’s HIO. We pick intensity snapshots at op-
timally chosen time intervals that are less than the corre-
sponding decorrelation time. Initially, we solve the phase
problem for a late time frame, where the domains have
coarsened. Then we use the solution as an initial guess for an
earlier more complex frame. This is repeated recursively
backward in time. Our method features only one adjustable

parameter, which determines an average angular distance be-
tween frames. In a real experiment, this strategy’s applicabil-
ity is limited by the rate at which intensity measurements are
available. However, the use of experimental data should oth-
erwise be relatively straightforward and it would constitute a
good test for the practical application of this technique.
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